Convexity Arguments for Efficient Minimization of the Bethe and Kikuchi Free Energies

نویسنده

  • Tom Heskes
چکیده

Loopy and generalized belief propagation are popular algorithms for approximate inference in Markov random fields and Bayesian networks. Fixed points of these algorithms have been shown to correspond to extrema of the Bethe and Kikuchi free energy, both of which are approximations of the exact Helmholtz free energy. However, belief propagation does not always converge, which motivates approaches that explicitly minimize the Kikuchi/Bethe free energy, such as CCCP and UPS. Here we describe a class of algorithms that solves this typically non-convex constrained minimization problem through a sequence of convex constrained minimizations of upper bounds on the Kikuchi free energy. Intuitively one would expect tighter bounds to lead to faster algorithms, which is indeed convincingly demonstrated in our simulations. Several ideas are applied to obtain tight convex bounds that yield dramatic speed-ups over CCCP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CCCP Algorithms to Minimize the Bethe and Kikuchi Free Energies: Convergent Alternatives to Belief Propagation

This article introduces a class of discrete iterative algorithms that are provably convergent alternatives to belief propagation (BP) and generalized belief propagation (GBP). Our work builds on recent results by Yedidia, Freeman, and Weiss (2000), who showed that the fixed points of BP and GBP algorithms correspond to extrema of the Bethe and Kikuchi free energies, respectively. We obtain two ...

متن کامل

The Generalized Distributive Law and Free Energy Minimization∗

In an important recent paper, Yedidia, Freeman, and Weiss [7] showed that there is a close connection between the belief propagation algorithm for probabilistic inference and the Bethe-Kikuchi approximation to the variational free energy in statistical physics. In this paper, we will recast the YFW results in the context of the “generalized distributive law” [1] formulation of belief propagatio...

متن کامل

Approximate Inference and Constrained Optimization

Loopy and generalized belief propagation are popular algorithms for approximate inference in Markov random fields and Bayesian networks. Fixed points of these algorithms correspond to extrema of the Bethe and Kikuchi free energy (Yedidia et al., 2001). However, belief propagation does not always converge, which motivates approaches that explicitly minimize the Kikuchi/Bethe free energy, such as...

متن کامل

On the Uniqueness of Loopy Belief Propagation Fixed Points

We derive sufficient conditions for the uniqueness of loopy belief propagation fixed points. These conditions depend on both the structure of the graph and the strength of the potentials and naturally extend those for convexity of the Bethe free energy. We compare them with (a strengthened version of) conditions derived elsewhere for pairwise potentials. We discuss possible implications for con...

متن کامل

Bounds on the Bethe Free Energy for Gaussian Networks

We address the problem of computing approximate marginals in Gaussian probabilistic models by using mean field and fractional Bethe approximations. As an extension of Welling and Teh (2001), we define the Gaussian fractional Bethe free energy in terms of the moment parameters of the approximate marginals and derive an upper and lower bound for it. We give necessary conditions for the Gaussian f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Artif. Intell. Res.

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2006